Uncertainty Principles for Orthonormal Bases
نویسنده
چکیده
In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro. Finally, we show that Benedicks’ result implies that solutions of the Shrödinger equation have some (appearently unnoticed) energy dissipation property.
منابع مشابه
Uncertainty Principles and Sparse Signal Representations Using Overcomplete Representations
This discussion sparse representations of signals in R. The sparsity of a signal is quantified by the number of nonzero components in its representation. Such representations of signals are useful in signal processing, lossy source coding, image processing, etc. We first speak of an uncertainty principle regarding the sparsity of any two different orthonormal basis representations of a signal S...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملUncertainty principles for orthonormal sequences
The aim of this paper is to provide complementary quantitative extensions of two results of H.S. Shapiro on the time-frequency concentration of orthonormal sequences in L2(R). More precisely, Shapiro proved that if the elements of an orthonormal sequence and their Fourier transforms are all pointwise bounded by a fixed function in L2(R) then the sequence is finite. In a related result, Shapiro ...
متن کاملm at h . C A ] 1 6 Ju n 20 06 UNCERTAINTY PRINCIPLES FOR ORTHONORMAL SEQUENCES PHILIPPE
The aim of this paper is to provide complementary quantitative extensions of two results of H.S. Shapiro on the time-frequency concentration of orthonormal sequences in L(R). More precisely, Shapiro proved that if the elements of an orthonormal sequence and their Fourier transforms are all pointwise bounded by a fixed function in L(R) then the sequence is finite. In a related result, Shapiro al...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006